Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Ecotechnol ; 11: 100185, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36158756

RESUMO

A growing body of evidence has demonstrated the significance of the gut microbiota in host health, while the association between gut microbiota dysbiosis and multiple diseases is yet elusive in the scenario of exposure to widely used pesticides. Here, we show that gut microbiota dysbiosis involves in host's abnormal lipid metabolism and consequently the non-alcoholic fatty liver disease in Xenopus laevis upon exposure to cis-bifenthrin, one of the most prevalent pyrethroid insecticides in the world. With the guidance of gut microbiota analysis, we found that cis-bifenthrin exposure significantly perturbed the gut microbial community, and the specific taxa that served as biomarkers were identified. Metabolomics profiling and association analysis further showed that a significant change of intestinal metabolites involved in lipid metabolic pathways were induced along with the microbiota dysbiosis upon exposure to cis-bifenthrin. Detailed investigation showed an altered functional regulation of lipids in the liver after cis-bifenthrin exposure and the accumulation of lipid droplets in hepatocytes. Specifically, a change in deoxycholic acid alters bile acid hepatoenteral circulation, which affects lipid metabolism in the liver and ultimately causes the development of fatty liver disease. Collectively, these findings provide novel insight into the gut microbiota dysbiosis upon pesticide exposure and their potential implication in the development of chronic host diseases related to liver metabolic syndrome.

2.
Front Immunol ; 13: 879487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072601

RESUMO

Background: Preterm birth (PTB) is a multifactorial syndrome that seriously threatens the health of pregnant women and babies worldwide. Recently, circular RNAs (circRNAs) have been understood as important regulators of various physiological and pathological processes. However, the expression pattern and potential roles of circRNAs in PTB are largely unclear. Methods: In this study, we extracted and analyzed the circRNA expression profiles in maternal and fetal samples of preterm and term pregnancies, including maternal plasma, maternal monocytes, myometrium, chorion, placenta, and cord blood. We identified the circRNAs which is associated with PTB in different tissues and explored their relationships from the perspective of the overall maternal-fetal system. Furthermore, co-expression analysis of circRNAs and mRNAs, target microRNAs (miRNAs), and RNA-binding proteins (RBPs), provided new clues about possible mechanisms of circRNA function in PTB. In the end, we investigated the potential special biofunctions of circRNAs in different tissues and their common features and communication in PTB. Results: Significant differences in circRNA types and expression levels between preterm and term groups have been proved, as well as between tissues. Nevertheless, there were still some PTB-related differentially expressed circRNAs (DECs) shared by these tissues. The functional enrichment analysis showed that the DECs putatively have important tissue-specific biofunctions through their target miRNA and co-expressed mRNAs, which contribute to the signature pathologic changes of each tissue within the maternal-fetal system in PTB (e.g., the contraction of the myometrium). Moreover, DECs in different tissues might have some common biological activities, which are mainly the activation of immune-inflammatory processes (e.g., interleukin1/6/8/17, chemokine, TLRs, and complement). Conclusions: In summary, our data provide a preliminary blueprint for the expression and possible roles of circRNAs in PTB, which lays the foundation for future research on the mechanisms of circRNAs in PTB.


Assuntos
MicroRNAs , Nascimento Prematuro , Feminino , Perfilação da Expressão Gênica , Humanos , Recém-Nascido , MicroRNAs/genética , MicroRNAs/metabolismo , Gravidez , Nascimento Prematuro/genética , RNA Circular/genética , RNA Mensageiro/genética
3.
Life Sci ; 308: 120914, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057401

RESUMO

AIMS: The deacetylase Sirtuin 6 (SIRT6) is up-regulated during fibrogenesis in renal tubular cells and post-ischemia/reperfusion kidneys. Hence, our aim was to investigate the mechanism of SIRT6 up-regulation upon profibrotic stress. MAIN METHODS: Immunohistochemical staining was used to detect the expression of UBC9 in the kidney section. The interaction of GSK-3ß and SIRT6, and phosphorylation level of SIRT6 were detected by the immunoprecipitation assay. The wild-type and phosphorylated site mutant plasmids of SIRT6 were constructed and stably transfected to BUMPT cells to evaluate the phosphorylation function of SIRT6 by immunoblotting assay. KEY FINDINGS: The phosphorylation of SIRT6 is significantly increased during TGF-ß treatment in mouse renal tubular cells. GSK-3ß can physically interact with SIRT6 in renal tubular cells, and this interaction is enhanced by TGF-ß treatment. Moreover, GSK-3ß is the phosphorylation kinase for SIRT6, and phosphorylates SIRT6 at Serine 326 residue to prevent its ubiquitination-mediated proteasomal degradation. Non-phosphorylatable mutant, S326A, of SIRT6, restores ß-catenin activation and fibrotic changes in renal tubular cells. SIGNIFICANCE: The present study demonstrates that a new mechanism for GSK-3ß-mediated anti-fibrotic function in renal fibrosis through phosphorylation of SIRT6 to prevent its proteasomal degradation.


Assuntos
Sirtuínas , beta Catenina , Animais , Fibrose , Glicogênio Sintase Quinase 3 beta/metabolismo , Rim/metabolismo , Camundongos , Fosforilação , Serina/metabolismo , Transdução de Sinais , Sirtuínas/genética , Sirtuínas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
4.
Int J Med Sci ; 19(3): 546-562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370464

RESUMO

Recurrent miscarriage (RM) and unexplained infertility (UI) are gordian knots in reproductive medicine, which are troubling many patients, doctors, and researchers. Although these two diseases of early pregnancy have a significant impact on human reproductive health, little is known about the specific mechanisms, which caused treatment difficulties. This study focused on the molecular signatures underlying the pathological phenotypes of two diseases, with the hope of using statistical methods to identify the significant core genes. An unbiased Weighted Correlation Network Analysis (WGCNA) algorithm was used for endometrial transcriptome data analysis and the disease-related gene modules were screened out. Through enrichment analysis of the candidate genes, we found similarities between both diseases and shared enrichment of immune-related pathways. Therefore, we used immune algorithms to assess the infiltration of immune cells and found abnormal increases of CD8+T cells and neutrophils. In order to explore the molecular profile behind the immunophenotypic changes, we used the SVM algorithm and LASSO regression to identify the core genes with diagnostic capacity in both diseases and discussed their significance of immune disorders in the endometrium. In the end, the satisfactory diagnostic ability of these core genes was verified in the broader group. Our results demonstrated the presence of immune disorders in non-pregnancy tissues of RM and UI, and identified the core molecules of this phenotype, and discuss mechanisms. This provides exploratory evidence for the in-depth understanding of the mechanism of RM and UI and may provide potential targets for their future treatment.


Assuntos
Aborto Habitual , Infertilidade , Aborto Habitual/genética , Endométrio/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Gravidez , Transcriptoma/genética
5.
EPMA J ; 13(1): 87-106, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35273661

RESUMO

Preterm birth (PTB) is the leading cause of neonatal death. The essential strategy to prevent PTB is the accurate identification of threatened preterm labor (TPTL) women who will have PTB in a short time (< 7 days). Here, we aim to propose a clinical model to contribute to the effective prediction, precise prevention, and personalized medical treatment for PTB < 7 days in TPTL women through bioinformatics analysis and prospective cohort studies. In this study, the 1090 key genes involved in PTB < 7 days in the peripheral blood of TPTL women were ascertained using WGCNA. Based on this, the biological basis of immune-inflammatory activation (e.g., IFNγ and TNFα signaling) as well as immune cell disorders (e.g., monocytes and Th17 cells) in PTB < 7 days were revealed. Then, four core genes (JOSD1, IDNK, ZMYM3, and IL1B) that best represent their transcriptomic characteristics were screened by SVM and LASSO algorithm. Therefore, a prediction model with an AUC of 0.907 was constructed, which was validated in a larger population (AUC = 0.783). Moreover, the predictive value (AUC = 0.957) and clinical feasibility of this model were verified through the clinical prospective cohort we established. In conclusion, in the context of Predictive, Preventive, and Personalized Medicine (3PM), we have developed and validated a model to predict PTB < 7 days in TPTL women. This is promising to greatly improve the accuracy of clinical prediction, which would facilitate the personalized management of TPTL women to precisely prevent PTB < 7 days and improve maternal-fetal outcomes.

6.
Inflammation ; 45(2): 876-890, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34773188

RESUMO

This study aimed to investigate whether interleukin-27 (IL-27) activates maternal peripheral blood mononuclear cells (PBMCs) and induces inflammatory responses in amniotic epithelial cells in preterm labour (PL). The expression of IL-27p28, EBI3 and IL-27Rα was compared in maternal PBMCs of the PL, term labour (TL) and term not in labour (TNL) groups. The relationship between IL-27 and molecules associated with PBMC activation was investigated using bioinformatic and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses. We investigated the inflammatory effects of IL-27 in PBMCs and its underlying mechanisms in vitro. In addition, we treated amniotic epithelial cells (WISH cells) with a PBMC-conditioned medium to identify the inflammatory effects of IL-27-treated PBMCs in amniotic epithelial cells. The expression of IL-27p28 and IL-27Rα in PBMCs of the PL group was higher than that in the TL/TNL groups. Bioinformatic analysis revealed that IL-27 was positively correlated with IFNG, IL6, IL1ß, CXCL10 and ICAM1 in the whole blood samples of pregnant women in the PL group, which was confirmed using qRT-PCR. Furthermore, rhIL-27 promoted the expression of Th1 cell-related molecules (T-bet, IFN-γ and ICAM-1) and proinflammatory cytokines (IL-6 and IL-1ß) in PBMCs in vitro, which was partially mediated by the JAK2/STAT1 pathway. In addition, it enhanced the expression of IL-27p28, EBI3 and IL-27Rα in PBMCs. Moreover, the expression of IL-6, IL-1ß and TNF-α in WISH cells was significantly increased by the conditional medium derived from IL-27-treated PBMCs. IL-27 upregulated the expression of Th1 cell-related molecules and proinflammatory cytokines in PBMCs partially mediated by the JAK2/STAT1 pathway. Inflammatory responses were induced in WISH cells by a conditional medium derived from IL-27-treated PBMCs. Therefore, IL-27 may contribute to PL by promoting inflammation in maternal PBMCs and amniotic epithelial cells.


Assuntos
Interleucina-27 , Trabalho de Parto Prematuro , Citocinas/metabolismo , Feminino , Humanos , Recém-Nascido , Interleucinas , Leucócitos Mononucleares/metabolismo , Trabalho de Parto Prematuro/metabolismo , Gravidez , Síndrome de Resposta Inflamatória Sistêmica/metabolismo
7.
Reprod Sci ; 29(6): 1764-1775, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34859389

RESUMO

The objective of this study is to investigate the effect of IL-27 on Th1 cells infiltration in human fetal membranes (FMs) in preterm labor (PL). The expression of Th1 cells specific transcription factor (T-bet), Th1 cells infiltration related molecules (CXCL9, CXCL10, CXCL11, and ICAM-1), and IL-27 receptor α subunit (IL-27Rα) was compared in human FMs from pregnant women in PL group and term labor (TL) group. In vitro, rhIL-27 was added to the culture medium of amniotic epithelial cells (WISH cells) to detect the expression of CXCL9, CXCL10, CXCL11, and ICAM-1. Furthermore, the underlying signaling pathway was detected by single-sample gene set enrichment analysis and western blot analysis. The expression of T-bet and CXCL9, CXCL10, CXCL11, and ICAM-1 as well as IL-27Rα was higher in human FMs from PL group than TL group. In vitro, rhIL-27 could upregulate the expression of CXCL9, CXCL10, CXCL11, and ICAM-1 in WISH cells. Using gene-set enrichment analysis of FMs, JAK/STAT signaling pathway was found to be activated by IL-27 signaling in PL. Using western blot analysis, JAK2/STAT1/STAT3 signaling pathway was confirmed to be enhanced in rhIL-27 treated WISH cells. In addition, AG490 (JAK2 inhibitor) could inhibit the secretion of CXCL9, CXCL10, and CXCL11 in WISH cells stimulated by rhIL-27. Our results suggested that IL-27 may promote Th1 cells infiltration in human FMs in PL, by promoting the expression of CXCL9, CXCL10, and CXCL11 at least partly through JAK2/STAT1/STAT3 signaling pathway.


Assuntos
Interleucina-27 , Trabalho de Parto Prematuro , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Membranas Extraembrionárias/metabolismo , Feminino , Humanos , Recém-Nascido , Molécula 1 de Adesão Intercelular , Trabalho de Parto Prematuro/metabolismo , Gravidez , Células Th1/metabolismo
8.
Bioengineered ; 12(1): 3201-3218, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34224308

RESUMO

Preterm birth (PTB) is an immune-inflammatory disease that needs to be resolved. This study aimed to identify the role of interleukin-27 (IL-27), an immunomodulatory factor, in PTB and its associated mechanisms. Here, we analyzed the high-throughput of samples data from the maternal-fetal interface to the peripheral circulation obtained from public databases and reported that the elevated IL-27 was involved with the onset of PTB. Further bioinformatics analyses (e.g. GeneMANIA and GSEA) revealed that IL-27 overexpression in the peripheral circulation as well as maternal-fetal interface is related to the activation of the immune-inflammatory process represented by IFN-γ signaling, etc. In addition, IL-27 and immune infiltration correlation analysis demonstrated that IL-27 mediates this immune-inflammatory imbalance, plausibly mainly through monocyte-macrophage and neutrophils. This finding was further validated by analyzing additional datasets. Overall, this is the first study to elaborate on the role of IL-27-mediated immuno-inflammation in PTB from the perspective of bioinformatics, which may provide a novel strategy for the prevention and treatment of PTB.


Assuntos
Inflamação , Interleucinas/análise , Nascimento Prematuro , Biologia Computacional , Feminino , Humanos , Recém-Nascido , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Gravidez , Nascimento Prematuro/genética , Nascimento Prematuro/imunologia , Nascimento Prematuro/metabolismo , Nascimento Prematuro/fisiopatologia , Transcriptoma/genética , Transcriptoma/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...